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Abstract

Real-time AI systems have begun to address the challenge

of restructuring problem solving to meet real-time con-

straints by making key trade-offs that pursue less than

optimal strategies with minimal impact on system goals.

Several approaches for adapting to dynamic changes in sys-

tem operating conditions are known. However, simulta-

neously adapting system decision criteria in a principled

way has been difficult. Towards this end, a general tech-

nique for dynamically making such trade-offs using a

combination of decision theory and domain knowledge has

been developed. The paper discusses multi-attribute utility

theory (MAUT), a decision theoretic approach for making

one-time decisions, describes dynamic trade-off evaluation

as a knowledge-based extension of MAUT that is suitable

for highly dynamic real-time environments, and provides an

example of dynamic trade-off evaluation applied to a spe-

cific data management trade-off in a real-world spacecraft

monitoring application.

1. Introduction

Lengthy response times often prohibit optimal problem

solving in the presence of real-time constraints. Effective

real-time systems therefore require meta-reasoning for mak-

ing appropriate trade-offs and, when necessary, pursuing

less optimal methods. Such meta-reasoning often must take

place in the presence of incomplete information, insufficient

resources, and unpredictable situations; precise mathemati-

cal approaches with parallels in traditional control theory

therefore cannot be formulated. As a result, the applicability

of decision theory and the psychology of judgment to this

problem area was recognized early, with research on heu-

ristic methods for inference control [Simon 1955]. Howev-

er, initial enthusiasm for using decision theory as an artifi-

cial intelligence technique dwindled in favor of approaches

that seemed to lend themselves more naturally to expressing

the rich structure of human knowledge [Horvitz 1988].

Uncertainty in reasoning has since been expressed with

probabilities and statistics and has been thoroughly explored
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for nonreal-time AI applications in the context of Bayesian

belief representation [Pearl 1988], [Shachter 1987]. How-

ever, degrees of uncertainty in real-time situations can

change rapidly, imposing overwhelming complexities on

these techniques. Bayesian statistics relies on the availabil-

ity of conditional probabilities for the various hypotheses

and pieces of evidence that pertain to a given situation. A

common implementation of Bayesian statistics appears in

medical expert systems that calculate the probability that a

patient is suffering from a particular disease, given a mani-

fested set of symptoms. Even in this relatively simple

application with slow trend changes, the prospect of deriv-

ing the needed statistics is not straightforward: it is beset by

a multitude of questions and variables such as when to use

global statistics rather than local ones, how often to update

models to reflect changing trends, and, more fundamentally,

how to get access to valid information given inaccuracies

and varying procedures in disease reporting. A central dif-

ficulty associated with the use of Bayesian statistics is

therefore centered around dependence on stable information

about the domain environment: this information, which is

difficult to obtain even in simpler real-world situations, can

be impossible to derive dynamically for complex real-time

problems.

For such reasons, there has been renewed interest in deci-

sion theory for real-time AI applications. Rapidly changing

circumstances require making trade-offs and expressing

judgments, two processes which can entail a substantial lev-

el of subjectivity [von Winterfeldt 1986] and are therefore

incompatible with rigid methods of analysis that require sta-

ble and accurate information. Decision theory provides a

key ingredient: flexibility. This flexibility is embodied in

formal decision-theoretic principles for obtaining preferred

courses of action in the presence of uncertain events and

conflicting objectives.

The simultaneous consideration of time pressure, complex

environments, and potentially conflicting objectives has

been studied in several different settings, including game

playing [Russell 1989] and medical decision-making [Hor-



vitz1989].Studiesofrationalagentswithtimeconstraints
havealsobeguntoemergein theliterature[D'Ambrosio
1990],[Hansson1990].Mostof thesestudies,however,
relyuponassumptionsthatarenotuniversallyapplicable.
Bothgame-playingandmedicaldiagnosis,forexample,are
self-containeddomainswithrelativelylongtimelapsesal-
lowedbetweenstimulusandresponse.Manyinteresting
domains,suchasspacecraftmonitoring,violatebothas-
sumptions:thenumberof potentialvariablesishugeand
responsetimeisnegligible.Theproblemof automated
spacecraftmonitoringprovidesaperfectexampleofareal-
timeenvironmentthatischaracterizedbychangingcircum-
stances,uncertainevents,andconflictingcomputational
objectives.Severalreal-timesystemswithknowledge-
basedcomponentshavebeendevelopedforthiscomplex
applicationdomain,[Laffey1988],[Muratore1990],
[Schwuttke1990]butthesesystemshavefocusedprimarily
onbeingfastenoughtohandleexpectedcomputational
loadsandnotonrespondingdynamicallytounforeseen
changesinreal-timedemands.

2. Dynamic Trade-Off Evaluation

Multi-attribute utility theory offers a natural way for dealing

with competing objectives and is computationally straight-

forward, but has not been applied in dynamic real-time

environments. Although a variety of static techniques from

multi-attribute utility theory exist, only three variants of

these techniques have been commonly applied to real-world

situations [von Winterfeldt 1986]: the simple, multi-

attribute rating technique [Edwards 1977], difference value

measurement [Dyer 1979], and subjectively expected utility

(SEU) measurement [Keeney 1976]. These approaches

consist of the same general procedures and have collectively

become known as SEU techniques. Edwards' technique is

not only the simplest computationally, but also the most

amenable to combination with knowledge-based

approaches. It has thus been selected for our extension to

dynamic real-time environments.

Our approach to this extension is to modify the basic SEU

procedures while attempting to maintain their inherent sim-

plicity, robustness, and flexibility. Our procedure is termed

Dynamic Tradeoff Evaluation (DTE). In DTE, utility theo-

ry is used to rank alternatives in a preference space, and

knowledge-based decision rules are used at run-time to 1)

dynamically re-weight the attributes of individual alterna-

tives and 2) to dynamically select among preference criteria

in the preference space (depending on situational attributes

and operational mode). The DTE methods are sufficiently

general that they are applicable to a variety of run-time

trade-offs, and are currently being applied to several very

different real-time, real-world trade-offs in the domain of

spacecraft monitoring. (See [Schwuttke 1991], which dis-

cusses and classifies a large range of potential trade-offs in

Real-time AI.) The DTE methods are sufficiently general

that they are applicable to a variety of run-time trade-offs

and to integration into a real-time monitoring architecture.
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The DTE procedure involves a sequence of six steps, many

of which are derived from the steps of static SEU procedure.

The first three of these steps and part of the fourth must be

completed during the design phase of the system. For a

given trade-off, the procedure includes:

1. Definition of the trade-off instantiation mechanism. This

step involves specifying the circumstances under which

DTE is required and designing the mechanism that will de-

tect those circumstances and invoke the trade-off

evaluation.

2. Definition of application-specific alternatives and crite-

ria that determine the value of the alternatives. During this

step, the alternative actions to be considered in the trade-off

evaluation are specified, along with criteria that will be used

to evaluate the alternatives. As part of this process, the sys-

tem designers and domain experts also specify domain

knowledge and (if necessary) heuristics that define the var-

ious ways of implementing each alternative. In addition, the

decision criteria that influence the specific implementation

of a run-time alternative are considered.

3. Separate evaluation of each alternative. This is done in

conjunction with the previous step, and involves reliance on

subjective judgements in cases where no basis for objective
evaluation exists. Each alternative is ranked with respect

to each of the evaluation criteria, on a scale of 0 to 100, and

suitable consistency checks are applied to the evaluation.

4. Definition of weights and modes. Relative weights are

assigned to each of the criteria, along with ranges within

which the weights can vary. Domain knowledge is speci-

fied to determine the circumstances under which the

weights will be varied. In addition, multiple modes may be

specified, where each mode is governed by a different set

of weights. Both the variation of the weights and the choice

of a mode are determined at run-time using domain

knowledge. These decisions are based on instantaneous
circumstances in the monitored environment.

5. Aggregation. The weights selected in the previous step

are used to determine the aggregate value of each of the

alternatives, using the additive aggregation model put forth

in SEU. These aggregate values provide the evaluation of

the alternatives with regard to one of the trade-offaxes. De-

pending on the specific trade-off, similar evaluation and

aggregation may be required with regard to the second

trade-off axis. However, in many cases the evaluation on

the second axis may be directly calculated based on the dy-

namics of the environment. (In applications that do not

require domain knowledge, the evaluations on both axes

may be directly obtainable, but these applications are con-

sidered peripheral to this research ).

6. Selection. An alternative is selected based on greatest

total value with respect to both trade-off axes, as specified

in the SEU methods. When the evaluation indicates that

two or more alternatives are equally good, domain knowl-

edge is used to select one alternative over the others, or if

the alternatives are not mutually exclusive, to select several

of them.



3. Application: Telemetry Data Management

We describe the application of DTE by reference to its ap-

plication in a real-world spacecraft monitoring problem:

managing input data for real-time knowledge-based moni-

toring of telemetry data from the Galileo Solid-State Imag-

ing (SSI) system.

The basic real-time task for mission operations involves

comparing incoming engineering telemetry to a combina-

tion of predicted data values and limit ranges. Specific

predictions reflect subsystem goals that result from the

planned sequence of subsystem events, and the limit ranges

reflect the general operating parameters of the instrument.

This task involves two AI components: intelligent input data

management and knowledge-based anomaly detec-

tion/analysis, in addition to the basic real-time monitoring

task. Here we focus on the first of these. The (competing)

goals of intelligent data management in this application are

to dynamically adjust input data volumes to meet the pro-

cessing capabilities of the host hardware, while maximizing

the information content, maintaining alertness to unusual

events in the input data, and focusing on particularly rele-

vant tasks. The particular trade-off we examine in this

paper to illustrate our technique is a timeliness trade-off:

representativeness of the input data versus timeliness of the
solution.

In SSI, four possible data management alternatives have

been specified as a result of extensive interviews with an

imaging subsystem specialist as part of the first step of

DTE. These alternatives are: eliminating channels not in

the basic monitoring set, eliminating channels not in the

minimal set, reducing sampling rate on heuristically de-

fined subset of channels, and reducing sampling rate on the

entire channel set. The converse set of alternatives applies

when data rates or computational load from other processes

decrease. These converse alternatives include adding chan-

nels in the full monitoring set, adding channels in the basic

set, increasing sampling rate on a selected channel subset,

and increasing sampling rate on the entire channel set.

The four specified alternatives (numbered 1.1, 1.2, 2.1, and

2.2 respectively) are evaluated with regard to three criteria

that define data representativeness. For data reduction, these

include: (A) non-dynamic behavior, (B) irrelevance to an

existing problem area, and (C) non-negative impact on

monitoring integrity. A data channel must exhibit non-

dynamic behavior before it can be eliminated, frequent

channel value changes indicate a high level of activity that

must be monitored to maintain adequate representativeness.

When representativeness is an issue, irrelevance to existing

problem areas is important in deciding which channels to

remove from the monitored set. Finally, only channels that

do not compromise monitoring process integrity in current

circumstances can be eliminated without impacting

representativeness. Conversely, when the size of the moni-

toring set is being increased, the criteria must become (A_
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dynamic behavior, (B) relevance to an existing problem ar-

ea, and (C) positive impact on monitoring integrity.

The second step also requires the specification of domain

knowledge that shows how to implement the alternatives.

In SSI, the channel elimination alternatives and the second

sampling rate alternative are influenced most heavily by a

decision tree that defines deletable channel subsets and the

circumstances under which they apply. There are also ex-

ceptions that apply to some deletable subsets with respect to

criterion (A). This exception arises because channels with a

significant level of activity should not be eliminated from

the monitored set even if they are part of an appropriate

deletable subset. In contrast, the heuristically-defined sam-

pling rate alternative is entirely governed by the specific

situation in which it is applied. In a normal operating mode,

the sampling rate can be reduced on all channels that are not

part of the critical subset. In an anomaly detection mode, the

sampling rate should only be reduced on channels that are

irrelevant to anomaly detection. However, in the event of

large backlogs, reduction on sampling of all channels may
be desirable.

Occasionally channels must be added irrespective of

timeliness. This is because in anomaly detection mode, in-

creased representativeness takes instant precedence, and

channels pertinent to that anomaly are added. With multiple

simultaneous anomalies, more channels may be needed.

Subsequently, timeliness considerations may be applied to

some of the other channels in the monitoring set. When the

system returns to a normal operating mode, the channels

relevant to a previously resolved anomaly may be candi-

dates for removal from the monitoring set if timeliness must

be improved.

In the third step, relative weights are assigned to the

attributes. Initial weights and variance ranges for these

weights are defined so the weights can be adjusted during

the reasoning process. This allows the weights to accom-

modate changing circumstances in the monitored

environment. Weight variations are initiated when the sys-

tem detects that its performance is degrading, and are

implemented using rules that provide updates based on sit-

uational parameters. This step also entails subjectively

ranking each alternative in the context of each criterion at

design time, as shown in Figure 1. The ranking, obtained

and checked for consistency with the help of the subsystem

expert, is on a scale of 0 to 100 (with I00 having the maxi-

mum value). For example, alternative 2.1 obviously ranks

the highest with regard to B, because the expert specifically

designed this alternative not to impact channels with rele-

vance to an existing problem area. Alternative 1.1, which

removes the largest number of anomaly-related channels, is

perceived to be the poorest choice with regard to criterion B.

Conversely, when judged against criterion C, alternative

1.1 has the highest ranking because the channels that it re-

moves generally are the first to be removed and are only

added back in small subsets in the event of anomalies. Two



setsofweightsaredefinedforthisapplication,asshownin
Figure2.Thefirstsetappliesinnormaloperatingmodeand
thesecondappliesinanomalydetectionmode.Innormal
operatingmode,irrelevanceof achanneltoanexisting
problemareaisgivennoweight,becausenoproblemsare
present.However,inanomalyanalysismode,thisattribute
receivesthegreatestweight.

ATTRIBUTE

A

B

C

ALTERNATIVE NUMBER

1.1 1.2 2.1 2.2

75 90 30 40

20 30 90 50

100 75 40 25

Figure 1. Values of the Alternatives for the Galileo SSI
Trade-off.

In the fourth step, the single-attribute alternative rankings

and the attribute weights are aggregated into an overall eval-

uation of alternatives which combines with the application-

trade-off, the four alternatives must also be evaluated with

regard to timeliness. The timeliness impact of an alternative

is directly proportional to the percentage reduction (or in-

crease) in the number of monitored channels that results

from implementing that alternative. However, this percent-

age must be calculated immediately prior to making the

trade-off, based on the number of channels in the current set,

because the number of monitored channels is a dynamic

quantity determined by the set of events leading up to the

current circumstances. To clarify the dynamic and adaptive

nature of this evaluation, we consider the following

example.

Assume that the monitoring system has just been brought

on-line. Initially, all 49 channels are in the monitored set.

After some time the system detects that an input backlog is

building, and responds by deciding that some channels must
be removed from the monitored set. No anomalies have

been detected as yet, and no modifications to the starting

weights have been suggested by the knowledge base. As a

result of this situation, the system finds itself using the ag-

gregate values in the first line of Figure 3 (top) as represen-

tativeness values.

specific domain knowledge to enable the selection of most Timeliness values are obtained by calculating the net per-

valuable alternative for the given circumstances. This step centage reduction in input data. Alternative 1.1 eliminates

differs most significantly from the comparable static SEU

step for two reasons. First, circumstances dictate varying

weights, which in turn dictate varying aggregations. Sec-

ondly, circumstances may vary the knowledge that is

applied from situation to situation. Examples of the varying

aggregations that are obtained for both operating modes are

the channels not in the minimal set, or 32 of the 49 channels.

Alternative 1.2 eliminates the channels not in the basic set,

or 24 of the 49 channels (as governed by domain rules that

are not discussed in detail here). These alternatives therefore

result in a 65% and a 50% reduction respectively. Accord-

ing to our heuristics, the reduced sampling alternatives can

shown in the tables of Figure 3. These tables show that the eliminate 4 out of every 5 input values when no anomalies

data management actions that are most compatible with

maintaining maximum representativeness are determined

by external circumstances. The ranking of the four alterna-

tives with regard to representativeness value in varying

circumstances is summarized in Figure 4, with 1 being the

highest ranking and 4 being the lowest.

A NON-DYNAMIC BEHAVIOR --
NOM. (.45+/- 0.2)

A.DM (15 +,'-0.'I}

IRRELEVANCE TO AN N O.M (0.0)

EXISTING PROBLEM AREA A DM (.60)

N.O M C15 +/- 0 2)
NON-NEGATIVE IMPACT ON .....

MONITORING INTEGRITY A.D.M (.25 +/- 0.1)

(N OM. - Norma[ Operation Mode ¢ A.DM.- Anomaly Detection Mode}

Figure 2. Attributes and Weights for Telemetry Reduction
in the Galileo SSI Trade-off.

The final activity of this procedure involves the selection of

an alternative based on dynamic evaluation of the represen-
tativeness vs. timeliness trade-off. In order to make this

are present. Thus, with alternative 2.1, we can eliminate

80% of a subset of the monitored set. Under the present cir-

cumstances, this subset consists of all channels not in the

basic set. A reduction of 80% is therefore possible on 24 of

the 49 channels. With alternative 2.2, we eliminate 80% of

the sampling on the entire channel set, resulting in reduc-

tions of 50% and 80% respectively. The percentage reduc-

tions are plotted against the aggregate representativeness

value for each alternative as shown in Figure 5 (left). Both

representativeness and timeliness are thus rated on a scale of

0-100; one unit on the representativeness scale is equivalent

to one unit on the timeliness scale. The indifference curves

shown in the figure are implied by this constant trade-off of

units, alternatives lying on the same indifference curve have

equivalent value, and alternatives lying nearest to the upper

right of the graph are perceived as best. For this application,

the alternatives in order of preference are 1.1, 112, 2.2 and

2.1. (Note that timeliness considerations have changed the

order of preference from that shown in Figure 4, which is

based on representativeness alone.) As a result of this anal-

ysis, alternative 1.1 is selected and implemented. Our

system is now actively monitoring only 17 of the 49 chan-

nels, and is achieving adequate throughput. We will assume

that at some later time, an anomaly appears on channel

1910, which requires three additional channels to be added.

103



Attribute Wei_lht* Wei_lht*" Weight"*
A 0.45 0.65 0.25

B 0 0 0

C O. 55 0.35 0.75

ALTERNATIVE NUMBER

t .1 1.2 2.1

75 90 30

20 30 90

100 75 4O

2.2 t

4O I

50 I

25 t

A qqregate Value" (usin_qwei_ght'J_ 88.5"7" ....... 8_.75 ] 35.5 31.75 I

A_g_r_eg.ate Value'" (using weight*'_) [ 93.7_55 78.75 I 37.5 [ . 28,75 ]

N,O,M with no modification on starting weights

"" N.O.M, with weight modification for greater emphasis on environmental dynamics

"*" N.O,M. with weight modification for greater empahsis on overall monitoring integrity

Attribute Wei_/ht* Wei_lht** Wei_lht *'°
A O. 15 0.25 0.05

B 0.6 0.6 0

C O. 25 O, 15 0.35

_y_ue " (usi.n_qwelg.ht_......
Aggregate Value'* (usinq weight*')

A_greqate Value'*" (using wieght "*°)

A.D.M. with no modification on

ALTERNATIVE NUMBER

1.1 1.2 2.1

75 90

20 30

100 75

[- ....

__ 48.25 49.75

45.75 51,75

50.75 ..|_ 48.75
m

starting weights

2.2 I
i

30 40 I

90 50 I

40 25 I

__ . }

68.5 . __

67.5 _ ._

69.5 33,25 j

"" A.D.M. with weight modification for greater emphasis on environmental dynamics

*'" A.D.M. with weight modification for greater empahsis on overall monitoring integrity

Figure 3. Aggregate Values of Alternatives for Varying Weights in Normal Operational Mode (top) and Anomaly

Detection Mode (bottom).

N.O.M. with no modification

N.O.M. with backlog modification

N.OM. with monitoring modification

Elimination of chan. not

in basic subset

Elimination of chan. not

in critical subset

Sampling reduction

on heuristic subset

Sampling reduction

on entire subset

4

4A.DM. with no modification 3 2 1

A.DM. with backlog modification 3 2 1 4

A.D.M. withmonitoring modification 2 3 1 ; 4
i

Figure 4. Rankings of data management ahemative values with respect to representativeness for various modes.

The anomaly is solved, and at some later time, another

anomaly appears on channel 1881, requiring the addition of

12 more channels.

We are now actively monitoring 32 channels, and are be-

ginning to build a backlog. The system's backlog detection

moduIe detects the backlog, and initiates meta-reasoning to

reduce it. Figure 5 (right) shows the re-evaluation in re-

sponse to the environment change at this point. The analysis

will have been as follows. Alternatives 1.1 and 1.2 will both

allow only 3 channels of the 32 channels in the monitored

set to be eliminated. This is because 12 of the channels per-
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tain to the current anomaly and 17 belong to the minimal set.

Thus, both alternatives achieve a 9.3% reduction in input

data. Alternative 2.1 reduces sampling on approximately

60% of the channels in the sampling set, but because we are

in _he anomaly detection mode, we now only filter half of

the input data from these channels, achieving an effective

reduction of 30%. With alternative 2.2, we filter half of the

input data on all 32 channels for an effective reduction of

50%. These values are plotted against representativeness as

shown in Figure 5. In this case, however, the selection of an

alternative s not as obvious as in the previous iteration; al-

ternatives 2.1 and 2.2 are very close to lying on the same



0 20 40 60 80

[.-.,

80

60

4O

2O

-- 02. 2

-- 1.1 °1'2

20 40 60 80

Representativeness Representativeness

Figure 5. Timeliness vs. Representativeness for Dynamic Input Data Management in Galileo SSI Monitoring. Figure (a),

at the right, shows the evaluation of the tradeoff that is made at system initialization, and Figure (b), at the left, shows the

how the dynamics of the environment change after several hypothetical anomalies have been detected.

indifference curve. However, heuristics indicate that in the

anomaly detection mode, representativeness is the more im-

portant consideration, and alternative 2.1 must be selected.

Eventually, the anomaly on channel I881 is resolved, and

we return to the normal operation mode. Assuming no

change in data rate, in this mode a similar analysis will

cause the system to return to its original choice of altema-

tive 1.1, and to continue fully monitoring only channels in

the basic subset.

This example has shown the effectiveness of combining de-

cision theory with heuristics to dynamically make real-time

trade-offs for intelligent data management. The example

illustrates the dynamic nature of the decision environment,

and demonstrates the ability to use domain specific heuris-

tics to guide the trade-off process and achieve real-time

meta-reasoning for run-time control.

4. Conclusions

Several approaches are known for adapting AI problem

solving to dynamic changes in system operating conditions,

but simultaneously adapting decision criteria in a principled

way has been difficult. This paper has described a general

technique for dynamically making performance trade-offs

to achieve these ends using a combination of decision theo-

ry and heuristic domain knowledge. Dynamic Tradeoff

Evaluation is a knowledge-based extension of multi-

attribute utility theory. In DTE, multi-attribute utility theory

is used to rank alternatives in a preference space and heu-

ristic decision rules are used at run-time to dynamically
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re-weight the attributes that govern the value of individual

alternatives. This enables dynamic selection among prefer-

ence criteria in the preference space, depending on situa-

tional attributes and operational modes. DTE is suitable for

highly dynamic real-time environments, as illustrated by its

application in specific trade-offs spacecraft telemetry

monitoring. It provides a new, rigorous, and effective way

to simultaneously adapt system decision criteria and

problem-solving parameters.
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